Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Heliyon ; 10(3): e25260, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38327442

RESUMO

This study explores how a simple argentometric titration-like approach could be evolved into a versatile, scalable, fast, and robust strategy for the production of AgCl/quaternary ammonium compounds (QACs) colloidal nanoantimicrobials (NAMs). These systems, which are green, stable, cost-effective, and reproducible are found to be effective against a wide range of food pathogenic bacteria and biofilms. The option of a large-scale production for such colloidal suspensions was explored via the use of a peristaltic pump. The utilization of various types of biosafe QACs and a wide range of solvents including aqueous and organic ones renders this system green and versatile. Nanocolloids (NCs) were characterized using UV-Vis, X-ray photoelectron and Fourier transform infrared (FTIR) spectroscopies. Their morphology and crystalline nature were investigated by transmission electron microscopy (TEM) and selected area diffraction pattern (SAED). Nanoparticle (NP) size distribution and hydrodynamic radius were measured by dynamic light scattering (DLS), while the ζ-potential was found to be highly positive, thus indicating significant colloidal stability and antimicrobial activity. In fact, the higher the NP surface charge, the stronger was their bioactivity. Furthermore, the antibacterial and antibiofilm effects of the as-prepared NCs were tested against Gram-positive bacteria, such as Staphylococcus aureus (ATCC 29213) and Listeria monocytogenes 46, and Gram-negative bacteria, such as Escherichia coli (ATCC 25922) and Pseudomonas aeruginosa (ATCC 27853). The results clearly indicate that AgCl/QACs provide pronounced antibiofilm activity with long-term bacteriostatic effects against foodborne pathogenic bacteria rendering them an ideal choice for active food packaging systems.

2.
Foods ; 13(3)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38338554

RESUMO

Ellagic acid (EA), a polyphenolic constituent of plant origin, has been thoroughly investigated for its hypothesised pharmacological properties among which antioxidant and neuroprotective activities are included. The present study was designed to explore whether EA could attenuate heavy metal (cadmium, mercury, and lead)-induced neurotoxicity in SH-SY5Y cells, which were utilized as a model system for brain cells. MTT and LDH assays were performed to examine the viability of the SH-SY5Y cells after exposure to Cd, Hg, and Pb (either individually or in combination with EA) as well as the effects of necrotic cell death, respectively. Furthermore, 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA), a cell-based assay, was performed to determine whether EA could protect SH-SY5Y from heavy metal-induced oxidative stress. Results allowed us to assess the capability of EA to enhance the number of viable SH-SY5Y cells after exposure to heavy metal toxicity. Pre-treatment with EA showed a considerable, concentration-dependent, cytoprotective effect, particularly against Cd2+-induced toxicity. This effect was confirmed through the reduction of LDH release after the simultaneous cell treatment with Cd2+ and EA compared with Cd2+-treated cells. Furthermore, a significant, concentration-dependent decrease in reactive oxygen species (ROS) production, induced by H2O2 or heavy metals, was observed in the same model. Overall, the obtained results provide further insight into the protective role of EA against heavy metal-induced neurotoxicity and oxidative stress, thus indicating the potential beneficial effects of the consumption of EA-rich foods. However, to confirm its effects, well-designed human randomized controlled trials are needed to fill the existing gap between experimental and clinical research.

3.
Antibiotics (Basel) ; 12(12)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38136685

RESUMO

The benzothiazole nucleus is a major heterocyclic scaffold whose therapeutic potential has been thoroughly explored due to its structural simplicity and ease of synthesis. In fact, several benzothiazole derivatives have been synthesized over time, demonstrating numerous pharmacological properties such as anticancer, antimicrobial, anti-inflammatory, and antioxidant activities. Herein, we propose a new series of benzothiazole-phthalimide hybrids obtained by linking the phthalimide moiety to differently substituted benzothiazole nuclei through the N atom. These compounds have been screened for their anticancer properties against two human breast cancer cell lines. Furthermore, we delved into the mechanism of action of the most active hybrid, compound 3h, by assessing its capability to damage the nuclear DNA, trigger the apoptotic process in the high metastatic MDA-MB-231 cells, and prevent cellular migration. Moreover, in view of the documented antimicrobial activities of the two scaffolds involved, we explored the antibacterial and antifungal effects of the studied compounds by means of the broth microdilution method. Among the studied compounds, 3h showed the highest antimicrobial activity, both against gram-positive and gram-negative bacterial strains belonging to the ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) and against fungal strains of the Candida species with MICs values ranging from 16 to 32 µg/mL.

4.
Antibiotics (Basel) ; 12(12)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38136707

RESUMO

Systemic fungal infections have risen in recent decades and most of them are caused by Candida species, which are becoming increasingly resistant to conventional antifungal drugs. Biofilm production has been considered the most common growth form of Candida cells and is associated with a high level of antifungal resistance. At present, international research reports on the antifungal activity of non-traditional antimicrobial drugs and their potential use against life-threatening resistant fungal infections. Indeed, drug repurposing has led to the consideration of well-known compounds as a last-line therapy. The goal of this work is to evaluate the potential synergistic antifungal biofilm activity of new combinations between diclofenac sodium salt (DSS), a widely used non-steroidal anti-inflammatory drug (NSAID), with the essential oils (EOs) of Mentha piperita, Pelargonium graveolens, and Melaleuca alternifolia, whose antifungal activity has been well documented over the years. The in vitro antifungal activity of DSS and EOs was determined on different Candida strains. Susceptibility testing and the synergism of DSS and EOs versus biofilm cells was performed by using the broth microdilution assay and checkerboard methods. Minimum inhibitory concentrations (sMIC50) of DSS alone ranged from 1.25 to 2.05 mg/mL for all the strains considered. These values significantly decreased when the drug was used in combination with the EOs. The fractional inhibitory concentration index (FICI) was lower than 0.5 for almost all the associations, thus indicating a significant synergism, particularly for the DSS-Pelargonium graveolens combination towards the Candida strains examined. These preliminary results show that the combination of the EOs with DSS improves the antifungal activity on all the tested Candida strains, significantly lowering the concentrations of the components used and thus allowing any toxic effects to be overcome.

5.
Biology (Basel) ; 12(10)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37887045

RESUMO

Cobalt (Co) is an essential trace element for humans and other animals, but high doses can be harmful to human health. It is present in some foods such as green vegetables, various spices, meat, milk products, seafood, and eggs, and in drinking water. Co is necessary for the metabolism of human beings and animals due to its key role in the formation of vitamin B12, also known as cobalamin, the biological reservoir of Co. In high concentrations, Co may cause some health issues such as vomiting, nausea, diarrhea, bleeding, low blood pressure, heart diseases, thyroid damage, hair loss, bone defects, and the inhibition of some enzyme activities. Conversely, Co deficiency can lead to anorexia, chronic swelling, and detrimental anemia. Co nanoparticles have different and various biomedical applications thanks to their antioxidant, antimicrobial, anticancer, and antidiabetic properties. In addition, Co and cobalt oxide nanoparticles can be used in lithium-ion batteries, as a catalyst, a carrier for targeted drug delivery, a gas sensor, an electronic thin film, and in energy storage. Accumulation of Co in agriculture and humans, due to natural and anthropogenic factors, represents a global problem affecting water quality and human and animal health. Besides the common chelating agents used for Co intoxication, phytoremediation is an interesting environmental technology for cleaning up soil contaminated with Co. The occurrence of Co in the environment is discussed and its involvement in biological processes is underlined. Toxicological aspects related to Co are also examined in this review.

6.
Eur J Med Chem ; 259: 115695, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37567058

RESUMO

Alzheimer's disease is becoming a growing problem increasing at a tremendous rate. Serotonin 5-HT6 receptors appear to be a particularly attractive target from a therapeutic perspective, due to their involvement not only in cognitive processes, but also in depression and psychosis. In this work, we present the synthesis and broad biological characterization of a new series of 18 compounds with a unique 1,3,5-triazine backbone, as potent 5-HT6 receptor ligands. The main aim of this research is to compare the biological activity of the newly synthesized sulfur derivatives with their oxygen analogues and their N-demethylated O- and S-metabolites obtained for the first time. Most of the new triazines displayed high affinity (Ki < 200 nM) and selectivity towards 5-HT6R, with respect to 5-HT2AR, 5-HT7R, and D2R, in the radioligand binding assays. For selected, active compounds crystallographic studies, functional bioassays, and ADME-Tox profile in vitro were performed. The exciting novelty is that the sulfur derivatives exhibit an agonistic mode of action contrary to all other compounds obtained to date in this chemical class herein and previously reported. Advanced computational studies indicated that this intriguing functional shift might be caused by presence of chalcogen bonds formed only by the sulfur atom. In addition, the N-demethylated derivatives have emerged highly potent antioxidants and, moreover, show a significant improvement in metabolic stability compared to the parent structures. The cholinesterase study present micromolar inhibitory AChE and BChE activity for both 5-HT6 agonist 19 and potent antagonist 5. Finally, the behavioral experiments of compound 19 demonstrated its antidepressant-like properties and slight ability to improve cognitive deficits, without inducing memory impairments by itself. Described pharmacological properties of both compounds (5 and 19) allow to give a design clue for the development of multitarget compounds with 5-HT6 (both agonist and antagonist)/AChE and/or BChE mechanism in the group of 1,3,5-triazine derivatives.


Assuntos
Doença de Alzheimer , Calcogênios , Humanos , Doença de Alzheimer/tratamento farmacológico , Serotonina , Estrutura Molecular , Relação Estrutura-Atividade , Receptores de Serotonina/metabolismo , Ligantes , Triazinas/química , Éteres , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Acetilcolinesterase/metabolismo
7.
Mini Rev Med Chem ; 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37366352

RESUMO

Oxidative stress has been reported to be involved in the onset and development of several diseases, including neurodegenerative and cardiovascular disorders, some types of cancer, and diabetes. Therefore, finding strategies to detoxify free radicals is an active area of research. One of these strategies is the use of natural or synthetic antioxidants. In this context, melatonin (MLT) has been proven to possess most of the required characteristics of an efficient antioxidant. In addition, its protection against oxidative stress continues after being metabolized, since its metabolites also exhibit antioxidant capacity. Based on the appealing properties of MLT and its metabolites, various synthetic analogues have been developed to obtain compounds with higher activity and lower side effects. This review addresses recent studies with MLT and related compounds as potential antioxidants.

8.
Int J Mol Sci ; 24(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36768955

RESUMO

Selenium (Se) is a naturally occurring metalloid element essential to human and animal health in trace amounts but it is harmful in excess. Se plays a substantial role in the functioning of the human organism. It is incorporated into selenoproteins, thus supporting antioxidant defense systems. Selenoproteins participate in the metabolism of thyroid hormones, control reproductive functions and exert neuroprotective effects. Among the elements, Se has one of the narrowest ranges between dietary deficiency and toxic levels. Its level of toxicity may depend on chemical form, as inorganic and organic species have distinct biological properties. Over the last decades, optimization of population Se intake for the prevention of diseases related to Se deficiency or excess has been recognized as a pressing issue in modern healthcare worldwide. Low selenium status has been associated with an increased risk of mortality, poor immune function, cognitive decline, and thyroid dysfunction. On the other hand, Se concentrations slightly above its nutritional levels have been shown to have adverse effects on a broad spectrum of neurological functions and to increase the risk of type-2 diabetes. Comprehension of the selenium biochemical pathways under normal physiological conditions is therefore an important issue to elucidate its effect on human diseases. This review gives an overview of the role of Se in human health highlighting the effects of its deficiency and excess in the body. The biological activity of Se, mainly performed through selenoproteins, and its epigenetic effect is discussed. Moreover, a brief overview of selenium phytoremediation and rhizofiltration approaches is reported.


Assuntos
Selênio , Animais , Humanos , Selênio/metabolismo , Selenoproteínas/metabolismo , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Estado Nutricional
9.
Antibiotics (Basel) ; 11(11)2022 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36421261

RESUMO

Cinnamomum verum L. essential oil (CEO), commonly known as Ceylon cinnamon or cinnamon tree, is regarded as one of the most employed essential oils in the field of aromatherapy. It is usually applied externally as astringent, antipruritic, rubefacient, and anti-septic agent. Furthermore, both in vitro and in vivo research have demonstrated its numerous pharmacological effects, including the potentiality for treating neuralgia, myalgia, headache, and migraine. Several pieces of research also corroborated its significant antiviral and antimicrobial properties. Cinnamaldehyde, eugenol, caryophyllene, cinnamyl acetate, and cinnamic acid are the most representative compounds that are generally found in greater quantities in CEO and play a pivotal role in determining its pharmacological activities. Due to the global antibiotic resistance scenario and the dwindling amount of funding dedicated to developing new antibiotics, in recent years research has concentrated on exploring specific economic approaches against microbial infections. In this context, the purpose of this study was the investigation of the synergistic antibacterial activities of commercially available and chemically characterized CEO in combination with sertraline, a selective serotonin reuptake inhibitor (SSRI), whose repositioning as a non-antibiotic drug has been explored over the years with encouraging results. In vitro effects of the titled combination were assessed toward a wide panel of both Gram-positive and Gram-negative bacteria. The antimicrobial efficacy was investigated by using the checkerboard microdilution method. The interesting preliminary results obtained suggested a synergistic effect (fractional inhibitory index, FICI < 0.5) of sertraline in combination with CEO, leading to severe growth inhibition for all bacterial species under investigation.

10.
Antioxidants (Basel) ; 11(9)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36139705

RESUMO

Alzheimer's disease (AD) is a complex multi-factorial neurodegenerative disorder for which only few drugs (including donepezil, DPZ) are available as symptomatic treatments; thus, researchers are focusing on the development of innovative multi-target directed ligands (MTDLs), which could also alter the course of the disease. Among other pathological factors, oxidative stress has emerged as an important factor in AD that could affect several pathways involved in the onset and progression of the pathology. Herein, we propose a new series of hybrid molecules obtained by linking a phenothiazine moiety, known for its antioxidant properties, with N-benzylpiperidine or N-benzylpiperazine fragments, mimicking the core substructure of DPZ. The investigation of the resulting hybrids showed, in addition to their antioxidant properties, their activity against some AD-related targets, such as the inhibition of cholinesterases (both AChE and BChE) and in vitro Aß1-40 aggregation, as well as the inhibition of the innovative target fatty acid amide hydrolase (FAAH). Furthermore, the drug-likeness properties of these compounds were assessed using cheminformatic tools. Compounds 11d and 12d showed the most interesting multi-target profiles, with all the assayed activities in the low micromolar range. In silico docking calculations supported the obtained results. Compound 13, on the other hand, while inactive in the DPPH assay, showed the best results in the in vitro antioxidant cell assays conducted on both HepG2 and SHSY-5Y cell lines. These results, paired with the low or absent cytotoxicity of these compounds at tested concentrations, allow us to aim our future research at the study of novel and effective drugs and pro-drugs with similar structural characteristics.

11.
Antibiotics (Basel) ; 11(6)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35740222

RESUMO

The worldwide scenario of antibiotic resistance and the falling number of funds for the development of novel antibiotics have led research efforts toward the study of specific cost-effective strategies aimed at discovering drugs against microbial infections. Among the potential options, drug repositioning, which has already exhibited satisfactory results in other medical fields, came out as the most promising. It consists of finding new uses for previously approved medicines and, over the years, many "repurposed drugs" displayed some encouraging in vitro and in vivo results beyond their initial application. The principal theoretical justification for reusing already existing drugs is that they have known mechanisms of action and manageable side effects. Reuse of old drugs is now considered an interesting approach to overcome the drawbacks of conventional antibiotics. The purpose of this review is to offer the reader a panoramic view of the updated studies concerning the repositioning process of different classes of non-antibiotic drugs in the antimicrobial field. Several research works reported the ability of some non-steroidal anti-inflammatory drugs (NSAIDs), antidepressants, antipsychotics, and statins to counteract the growth of harmful microorganisms, demonstrating an interesting winning mode to fight infectious diseases caused by antimicrobial resistant bacteria.

13.
Curr Med Chem ; 29(1): 19-40, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34165402

RESUMO

INTRODUCTION: Thalidomide is an old well-known drug firstly used as morning sickness relief in pregnant women and then withdrawn from the market due to its severe side effects on fetal normal development. However, over the last few decades, the interest in this old drug has been renewed because of its efficacy in several important disorders as, for instance, multiple myeloma, breast cancer, and HIV-related diseases due to its antiangiogenic and immunomodulatory properties. Unfortunately, even in these cases, many after effects as deep vein thrombosis, peripheral neuropathy, constipation, somnolence, pyrexia, pain, and teratogenicity have been reported showing the requirement of careful and monitored use. For this reason, research efforts are geared toward the synthesis and optimization of new thalidomide analogues lacking in toxic effects, able to erase these limits and improve the pharmacological profile. AIMS: This review aims to examine the state-of-the-art concerning the current studies on thalidomide and its analogues towards cancer diseases focusing the attention on the possible mechanisms of action involved and the lack of toxicity. CONCLUSION: In the light of the collected data, thalidomide analogues and their ongoing optimization could lead, in the future, to the realization of a promising therapeutic alternative for fighting cancer.


Assuntos
Antineoplásicos , Mieloma Múltiplo , Doenças do Sistema Nervoso Periférico , Inibidores da Angiogênese/uso terapêutico , Antineoplásicos/uso terapêutico , Feminino , Humanos , Mieloma Múltiplo/tratamento farmacológico , Gravidez , Talidomida/uso terapêutico
14.
ChemMedChem ; 16(23): 3588-3599, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34519427

RESUMO

Three analogues of To042, a tocainide-related lead compound recently reported for the treatment of myotonia, were synthesized and evaluated in vitro as skeletal muscle sodium channel blockers possibly endowed with enhanced use-dependent behavior. Patch-clamp experiments on hNav1.4 expressed in HEK293 cells showed that N-[(naphthalen-1-yl)methyl]-4-[(2,6-dimethyl)phenoxy]butan-2-amine, the aryloxyalkyl bioisostere of To042, exerted a higher use-dependent block than To042 thus being able to preferentially block the channels in over-excited membranes while preserving healthy tissue function. It also showed the lowest active transport across BBB according to the results of P-glycoprotein (P-gp) interacting activity evaluation and the highest cytoprotective effect on HeLa cells. Quantum mechanical calculations and dockings gave insights on the most probable conformation of the aryloxyalkyl bioisostere of To042 in solution and the target residues involved in the binding, respectively. Both approaches indicated the conformations that might be adopted in both the unbound and bound state of the ligand. Overall, N-[(naphthalen-1-yl)methyl]-4-[(2,6-dimethyl)phenoxy]butan-2-amine exhibits an interesting toxico-pharmacological profile and deserves further investigation.


Assuntos
Butilaminas/farmacologia , Canal de Sódio Disparado por Voltagem NAV1.4/metabolismo , Éteres Fenílicos/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Antioxidantes/síntese química , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Antioxidantes/toxicidade , Butilaminas/síntese química , Butilaminas/metabolismo , Butilaminas/toxicidade , Células HEK293 , Células HeLa , Humanos , Mexiletina/farmacologia , Simulação de Acoplamento Molecular , Éteres Fenílicos/síntese química , Éteres Fenílicos/metabolismo , Éteres Fenílicos/toxicidade , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo , Bloqueadores do Canal de Sódio Disparado por Voltagem/síntese química , Bloqueadores do Canal de Sódio Disparado por Voltagem/metabolismo , Bloqueadores do Canal de Sódio Disparado por Voltagem/toxicidade
15.
Molecules ; 26(18)2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34577116

RESUMO

Lipids from milk are important nutritional components, although their health effects, especially for animal milks, are still questioned. Four types of commercial milks, two semi-skimmed animal milks (bovine and goat) and two vegetable ones (soy and rice), along with their total and free lipid fractions recovered by sequential centrifugation or by ethyl acetate extraction, respectively, have been analyzed. A higher antioxidant ability, reported as Trolox equivalent antioxidant capacity, was found for all raw milks compared to that of rice. This trend was confirmed, except for soy milk, as ROS reduction in Caco-2 cells. The free lipid fraction was shown to have the highest antioxidant potential in both chemical and biological tests. Moreover, goat and soy raw milks positively regulated Caco-2 cell viability after an inflammatory stimulus. This effect was lost when their total lipid fraction was tested. Finally, only the free lipid fraction from rice milk preserved the Caco-2 viability after LPS stimulation. Our data demonstrated that the lipid profile of each milk, characterized by GC-MS analysis, could contribute to dictate its biological effects, and, although additional in vitro and in vivo studies are needed, they could support the literature re-evaluating the health effects of animal-based versus plant-based milks in the intestinal cellular model.


Assuntos
Antioxidantes , Verduras , Células CACO-2 , Sobrevivência Celular , Fermentação , Humanos , Intestinos/efeitos dos fármacos
16.
Antibiotics (Basel) ; 10(6)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201271

RESUMO

According to recent studies, Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) have shown a good antimicrobial and antifungal activity. Their association with essential oils (EOs) could be useful for the treatment of infections caused by Candida spp. The aim of this studyis to evaluate the synergistic antifungal activity of new combinations between Diclofenac Sodium Salt (DSS), a widely used NSAID, with EOs of Mentha × piperita, Pelargonium graveolens and Melaleuca alternifolia. The in-vitro antifungal activity was determined on different Candida strains. The determination of the chemical composition of EOs was carried out by gaschromatography-massspectrometry (GC-MS). Susceptibility testing of planktonic cells was performed by using the broth microdilution assay and checkerboard methods. Minimum Inhibitory Concentrations (MIC) of DSS was in a range from 1.02 to 2.05 µg/mL reaching a MIC value of 0.05 µg/mL when combined with Pelargonium graveolens (FICI = 0.23-0.35) or Menthapiperita (FICI = 0.22-0.30) EOs. These preliminary results show thatthe combination of the EOs with DSS improves the antifungal activity on all the tested Candida strains.

17.
Curr Med Chem ; 28(8): 1535-1548, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32364065

RESUMO

Mexiletine is an antiarrhythmic drug belonging to IB class, acting as sodium channel blocker. Besides its well-known activity on arrhythmias, its usefulness in the treatment of myotonia, myotonic dystrophy and amyotrophic lateral sclerosis is now widely recognized. Nevertheless, it has been retired from the market in several countries because of its undesired effects. Thus, several papers were reported in the last years about analogues and homologues of mexiletine being endowed with a wider therapeutic ratio and a more selectivity of action. Some of them showed sodium channel blocking activity higher than the parent compound. It is noteworthy that mexiletine is used in therapy as a racemate even though a difference in the activities of the two enantiomers was widely demonstrated, with (-)-(R)-enantiomer being more active: this finding led several research groups to study mexiletine and its analogues and homologues in their optically active forms. This review summarizes the different synthetic routes used to obtain these compounds. They could represent an interesting starting point to new mexiletine-like compounds without common side effects related to the use of mexiletine.


Assuntos
Mexiletina , Bloqueadores do Canal de Sódio Disparado por Voltagem , Antiarrítmicos/uso terapêutico , Arritmias Cardíacas/tratamento farmacológico , Humanos , Mexiletina/uso terapêutico , Bloqueadores dos Canais de Sódio/farmacologia , Bloqueadores dos Canais de Sódio/uso terapêutico , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/uso terapêutico
18.
ChemMedChem ; 16(3): 578-588, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33015979

RESUMO

Under the hypothesis that cardioprotective agents might benefit from synergism between antiarrhythmic activity and antioxidant properties, a small series of mexiletine analogues were coupled with the 2,2,5,5-tetramethylpyrroline moiety, known for its antioxidant effect, in order to obtain dual-acting drugs potentially useful in the protection of the heart against post-ischemic reperfusion injury. The pyrroline derivatives reported herein were found to be more potent as antiarrhythmic agents than mexiletine and displayed antioxidant activity. The most interesting tetramethylpyrroline congener, a tert-butyl-substituted analogue, was at least 100 times more active as an antiarrhythmic than mexiletine.


Assuntos
Antiarrítmicos/farmacologia , Antioxidantes/farmacologia , Pirróis/farmacologia , Traumatismo por Reperfusão/tratamento farmacológico , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Canais de Sódio Disparados por Voltagem/metabolismo , Animais , Antiarrítmicos/síntese química , Antiarrítmicos/química , Antioxidantes/síntese química , Antioxidantes/química , Teoria da Densidade Funcional , Fluoresceínas/metabolismo , Cobaias , Humanos , Estrutura Molecular , Pirróis/síntese química , Pirróis/química , Traumatismo por Reperfusão/metabolismo , Células Tumorais Cultivadas , Bloqueadores do Canal de Sódio Disparado por Voltagem/síntese química , Bloqueadores do Canal de Sódio Disparado por Voltagem/química
19.
Bioorg Chem ; 105: 104440, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33217633

RESUMO

The indole scaffold has been recognized, over the years, as a model for the synthesis of compounds with anticancer activity by dint of its substantiated ability to act via multiple mechanisms, which also involves the inhibition of enzymes engaged in DNA replication. In this regard, a new series of indole and pyranoindole derivatives have been prepared, some of which showed good antitumor activity and proved their inhibitory effects on the tubulin target. The anticancer activity of the newly synthesized compounds has been evaluated on breast cancer cell lines, as MCF-7 and MDA-MB231, cervical cancer cells line HeLa and Ishikawa endometrial cancer cell line. Among the compounds under study, 7 exhibited a good antitumor activity on HeLa cell line (IC50 = 3.6 ± 0.5), leading to cell death by apoptosis due to the inhibition of tubulin polymerization, which demonstrated that the compound can explicate its function in a similar way to Vinblastine, a well-known inhibitor of tubulin polymerization. The data were also confirmed by in silico assays. No cytotoxicity against normal cells has been detected. Furthermore, in order to investigate the antioxidant properties, DPPH and ABTS tests were performed, together with fluorescence assays on 3T3-L1 cells. All our findings taken together led us to consider compound 7 a favourable candidate for the battle against cancer.


Assuntos
Antineoplásicos/síntese química , Antioxidantes/síntese química , Indóis/síntese química , Moduladores de Tubulina/síntese química , Tubulina (Proteína)/metabolismo , Células 3T3 , Animais , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Apoptose , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Peróxido de Hidrogênio/metabolismo , Indóis/farmacologia , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Espécies Reativas de Oxigênio/metabolismo , Moduladores de Tubulina/farmacologia
20.
Antibiotics (Basel) ; 9(10)2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32987638

RESUMO

In recent years, the increase of bacteria antibiotic- resistance has been a severe problem for public health. A useful solution could be to join some phytochemicals naturally present in essential oils (EOs) to the existing antibiotics, with the aim to increase their efficacy in therapies. According to in vitro studies, EOs and their components could show such effects. Among them, we studied the activity of Cinnammonum zeylanicum, Mentha piperita, Origanum vulgare, and Thymus vulgaris EOs on bacterial biofilm and their synergism when used in association with some common antibiotics such as norfloxacin, oxacillin, and gentamicin. The chemical composition of EOs was determined using gas chromatography (GC) coupled with mass spectrometry (MS) techniques. The EOs drug efficacy was evaluated on four different strains of Gram-positive bacteria forming biofilms. The synergistic effects were tested through the chequerboard microdilution method. The association EOs-antibiotics showed a strong destruction of the biofilm growth of the four bacterial species considered. The interaction of norfloxacin with EOs was the most effective in all the tested combinations against the strains object of this study. These preliminary results suggest the formulation of a new generation of antimicrobial agents based on a combination of antimicrobial compounds with different origin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA